Homework 5, due 9/30

- 1. Let $\Omega = D(0,2) \setminus \{-1,1\}$. Find a closed curve $\gamma : [0,1] \to \Omega$ such that $n(\gamma, a) = 0$ for all $a \in \Omega$, but γ is not contractible to a constant in Ω . You can just describe the curve in words, you do not need to give a formula.
- 2. Let $\Omega \subset \mathbf{C}$ be connected, $f : \Omega \to \mathbf{C}$ non-constant, holomorphic. Let γ be a closed curve in Ω , homotopic to a constant in Ω . Suppose that $a \in \Omega$ satisfies $n(\gamma, a) > 0$, and $n(\gamma, z) \ge 0$ for all $z \in \Omega$.

Prove that $f(\Omega)$ contains the connected component of f(a) in $\mathbb{C} \setminus \mathrm{Im}(f \circ \gamma)$. This gives another proof of the open mapping theorem.

- 3. Prove that for each $w \in D(0, 1)$, the equation $z^5(z 2) = w$ has exactly five solutions in D(0, 1), counted with multiplicities.
- 4. Let $g(z) = (z^2 1)^{-1}$.
 - (a) Show that there is no holomorphic function $f : \mathbb{C} \setminus \{-1, 1\} \to \mathbb{C}$ such that f' = g.
 - (b) Is there a holomorphic function $f: \mathbf{C} \setminus \overline{D(0,1)}$ with f' = g?
- 5. Let $\omega_1, \omega_2 \in \mathbf{C}$ be linearly independent over \mathbf{R} , and let

$$L = \{ n_1 \omega_1 + n_2 \omega_2 : n_1, n_2 \in \mathbf{Z} \}.$$

Let $f : \mathbf{C} \to \mathbf{C}$ be meromorphic, and doubly periodic, i.e. f(z+l) = f(z) for all $l \in L$ and $z \in \mathbf{C}$ where f is holomorphic.

For $z_0 \in \mathbf{C}$ denote by $P(z_0)$ the parallelogram

$$P(z_0) = \{z_0 + t_1\omega_1 + t_2\omega_2 : t_1, t_2 \in [0, 1]\}.$$

- (a) Show that if f has no poles, then f is constant.
- (b) If $\partial P(z_0)$ contains no zeros or poles of f, show that

$$\int_{\partial P(z_0)} f \, dz = 0.$$

- (c) If $\partial P(z_0)$ contains no zeros or poles of f, prove that there are the same number of zeros and poles in $P(z_0)$, counted with multiplicity.
- (d) Suppose $\partial P(z_0)$ contains no zeros or poles of f. Let z_1, \ldots, z_n be the zeros in $P(z_0)$, and w_1, \ldots, w_n be the poles in $P(z_0)$, repeated according to multiplicities. Considering the integral of zf'(z)/f(z) prove that

$$\sum_{k=1}^{n} (z_k - w_k) \in L.$$