Homework 5, due 9/30

1. Let $\Omega=D(0,2) \backslash\{-1,1\}$. Find a closed curve $\gamma:[0,1] \rightarrow \Omega$ such that $n(\gamma, a)=0$ for all $a \in \Omega$, but γ is not contractible to a constant in Ω. You can just describe the curve in words, you do not need to give a formula.
2. Let $\Omega \subset \mathbf{C}$ be connected, $f: \Omega \rightarrow \mathbf{C}$ non-constant, holomorphic. Let γ be a closed curve in Ω, homotopic to a constant in Ω. Suppose that $a \in \Omega$ satisfies $n(\gamma, a)>0$, and $n(\gamma, z) \geq 0$ for all $z \in \Omega$.
Prove that $f(\Omega)$ contains the connected component of $f(a)$ in $\mathbf{C} \backslash \operatorname{Im}(f \circ \gamma)$. This gives another proof of the open mapping theorem.
3. Prove that for each $w \in D(0,1)$, the equation $z^{5}(z-2)=w$ has exactly five solutions in $D(0,1)$, counted with multiplicities.
4. Let $g(z)=\left(z^{2}-1\right)^{-1}$.
(a) Show that there is no holomorphic function $f: \mathbf{C} \backslash\{-1,1\} \rightarrow \mathbf{C}$ such that $f^{\prime}=g$.
(b) Is there a holomorphic function $f: \mathbf{C} \backslash \overline{D(0,1)}$ with $f^{\prime}=g$?
5. Let $\omega_{1}, \omega_{2} \in \mathbf{C}$ be linearly independent over \mathbf{R}, and let

$$
L=\left\{n_{1} \omega_{1}+n_{2} \omega_{2}: n_{1}, n_{2} \in \mathbf{Z}\right\}
$$

Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be meromorphic, and doubly periodic, i.e. $f(z+l)=f(z)$ for all $l \in L$ and $z \in \mathbf{C}$ where f is holomorphic.
For $z_{0} \in \mathbf{C}$ denote by $P\left(z_{0}\right)$ the parallelogram

$$
P\left(z_{0}\right)=\left\{z_{0}+t_{1} \omega_{1}+t_{2} \omega_{2}: t_{1}, t_{2} \in[0,1]\right\} .
$$

(a) Show that if f has no poles, then f is constant.
(b) If $\partial P\left(z_{0}\right)$ contains no zeros or poles of f, show that

$$
\int_{\partial P\left(z_{0}\right)} f d z=0
$$

(c) If $\partial P\left(z_{0}\right)$ contains no zeros or poles of f, prove that there are the same number of zeros and poles in $P\left(z_{0}\right)$, counted with multiplicity.
(d) Suppose $\partial P\left(z_{0}\right)$ contains no zeros or poles of f. Let z_{1}, \ldots, z_{n} be the zeros in $P\left(z_{0}\right)$, and w_{1}, \ldots, w_{n} be the poles in $P\left(z_{0}\right)$, repeated according to multiplicities. Considering the integral of $z f^{\prime}(z) / f(z)$ prove that

$$
\sum_{k=1}^{n}\left(z_{k}-w_{k}\right) \in L
$$

